Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

نویسندگان

  • Isabelle Ayumi Spühler
  • Andreas Hauri
چکیده

Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated 'teaching' signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson's disease, or induced through drugs blocking dopamine reuptake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of Apomorphine Effects and Heterogeneity in the Medial Prefrontal Cortex on the Dopaminergic Behaviors of Rats

Objective(s) While the nucleus accumbens and the striatum have received much attention regarding their roles in stereotyped behaviors, the role of the medial prefrontal cortex (mPFC) has not been investigated to the same degree. Few studies have reported the role of the mPFC in dopaminergic induction of locomotor hyperactivity. The mPFC is a heterogeneous area (the anterior cingulated, prelimbi...

متن کامل

Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representa...

متن کامل

Can ovariectomy and learning affect prefrontal cortex GABAAα1 receptor distribution in passive avoidance model in rats?

Introduction: The interaction between steroid hormones and neurotransmitters such as GABA has been proved. The regulation of muscimol binding to high-affinity GABAA receptors by estradiol and progesterone has been studied within distinct brain regions using in vitro quantitative autoradiography. There are few studies about the mechanism of the effect of steroid hormones on behaviors such as ...

متن کامل

Effects of systemic and intra-prefrontal cortex administrations of ethanol on spatial working memory in male rats

Introduction: Ethanol can induce a wide spectrum of neurophysiological effects via interaction with multiple neurotransmitter systems and disruption of the balances between inhibitory and excitatory neurotransmitters. Prefrontal cortex is involved in cognitive process including working memory and is sensitive to ethanol. Present study investigates the effects of intraperitoneal (i.p.) admini...

متن کامل

Cinnamaldehyde improves methamphetamine-induced spatial learning and memory deficits and restores ERK signaling in the rat prefrontal cortex

Objective(s): Methamphetamine is a stimulant compound that penetrates readily into the central nervous system. Repeated exposure to methamphetamine leads to damage in the dopaminergic and serotonergic axons of selected brain regions. Previous studies showed that cinnamaldehyde improved memory impairment in animals. In the present study, we aimed to elucidate the effects of cinnamaldehyde on met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013